Why do you care about kinetic imaging?

A new optical imaging device has been released from Caliper, the IVIS Kinetic. Compared to older imaging workstations this new product allows acquisition of biological events within milliseconds by fluorescence or bioluminescence imaging both in sleeping or conscious animals. That machine, exploiting a highly sensitive EMCCD camera, will be mainly suited for monitoring real-time functional events like perfusion dynamics and pharmacokinetis, or rapid events like calcium transients or immunological reactions. I'm in doubt whether this one will be a significant advantage toward reportergenomics maturity. Speaking about in vivo reporter gene imaging, both luciferase and GFP family suffer from low sensitivity due to:
  1. relatively low light-emission - this explains why there is low time-resolution (you need to integrate signals over minutes, no hope to have a millisecond resolution);
  2. scattering and absorption by tissues - this explains why there is low space-resolution (you get a planar image and no satisfactory 3D solutions have been made so far).

Probably these limitations less influence imaging of bright chemical probes (not reporter-genes) explaining some marketing decisions from Caliper. Or maybe, really this is a revolutionary machine with surprising performances even for reporter imaging. Let it be.