Meet AGATA:

Meet AGATA:

21.10.14, 17h00 Venture Challenge EPFL, Lausanne. Closed.
27.10.14, 17h00 Sictic Investor Day, Lausanne CH. Program.
28.10.14, 18h00 Bioscope inauguration, Geneva CH. Program.

Might a machine win a Nobel prize?

ResearchBlogging.org

In 1997, the IBM computer Deep Blue wins a chess-game vs Garry Kasparov. This is considered a milestone in Artificial Intelligence research. Now, a second milestone dates April the 3rd, 2009 with Science publishing two reports on automating science. In the first one, Schmidt and Lipson (Cornell) propose a computational approach for detecting physical laws from experimentally collected data. As a principle for the identification on non-triviality, they first numerically calculate partial derivatives between variables from the data, then they generate candidate symbolic functions by randomly combining (and iteratively re-combining) mathematical building blocks. They finally compare the derivative expressions with the derivate data and score the best pairs according to parsimony criteria.

Given the dimensionality and the complexity of current “omics” data, the computation time required to detect solutions is probably near to 1000-10,000 hours, however the algorithm’s search seems highly parallelizable and very appealing for distributed approaches. What is more astonishing, is the following step. In a second report King and colleagues (Aberystwyth University) extend the concept of “artificial scientist” by generating ADAM:

this is a physically implemented laboratory automation system that […] executes cycles of scientific experimentation. (ADAM) automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments by using laboratory robotics, interprets the results and then repeats the cycle.

As a proof of concept, they applied Adam to the identification of genes encoding orphan enzymes in the yeast.

Despite the abundance in data, theoretical gaps still exist in systems biology and integrative physiology, automatic science can potentially increase the rate of scientific progress. At the end of this provocative paper, the authors wonder:

Might this process diminish the role of future scientists?

Quite the opposite: does chess-software diminished the number of chess-players?



Schmidt, M., & Lipson, H. (2009). Distilling Free-Form Natural Laws from Experimental Data Science, 324 (5923), 81-85 DOI: 10.1126/science.1165893

King, R., Rowland, J., Oliver, S., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L., Sparkes, A., Whelan, K., & Clare, A. (2009). The Automation of Science Science, 324 (5923), 85-89 DOI: 10.1126/science.1165620